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Abstract: In this paper, the global exponential synchronization problem is considered for a class of BAM neural
networks with time-varying delays. By using Lyapunov functional method and analysis techniques, three sufficient
conditions for the global exponential synchronization of the drive-response system are derived. Two numerical
examples are given in the end to illustrated the effectiveness of our theoretical results.
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1 Introduction
Synchronization, as a typical nonlinear phenomena,
first introduced by Pecora and Carrol in chaos systems
[1], has been intensively studied because of its poten-
tial applications in many technological fields mainly
including secure communications, chemical reactions,
biological neural networks, human heartbeat regula-
tion, chaos generators design, information science,
image processing, harmonic oscillation generation,
etc[2-9]. Up to now, various approaches have been
proposed for the synchronization of nonlinear sys-
tems such as impulsive control method[10,11], adap-
tive design control [12,13], feedback control[14,15],
fuzzy control [16,17] , periodically intermittent con-
trol [18,19] and so on.

On the other hand, the dynamics of delayed neural
networks (DNNS) has attracted considerable attention
due to the fact that there exist some complicated dy-
namics and even chaotic behaviours if the network’s
parameters and time delays are appropriately chosen.
Some good sufficient conditions for the synchroniza-
tion of the DNNS are presented [20-27].

However, all of the mentioned works mainly fo-
cus on the single-layer neural networks, such as Hop-
field neural networks, competitive neural networks,
cellular neural networks, Cohen-Grossherg neural
networks , etc. For two-layer hetero associative neu-
ral networks, called bidirectional associative mem-
ory (BAM) neural networks, there are few authors
to discuss the problem of synchronization except that
Juhong Ge and Jian Xu [28] studied the synchroniza-
tion and synchronized periodic solution in a simpli-

fied five-neuron BAM neural networks with delays.
But the delays considered in [28] is constants. In
fact, absolute constant delays is rarely in the process
of signals transmission among neurons, which is an
idealized approximations of varying delays. So it is
more realistic to consider time-varying delays in neu-
ral networks than constant delays. Besides, BAM neu-
ral networks has been successfully applied to pattern
recognition and artificial intelligence due to its gen-
eralization of the single-layer auto-associative Heb-
bian correlator to a two-layer pattern-matched hetero-
associative circuit. Therefore, it is important and in-
terest to investigate the synchronization of BAM neu-
ral networks with time-varying delays.

Inspired by the above discussion, in this paper, we
consider the problem of synchronization for a class
of BAM neural networks with varying-time delays.
The organization of this paper is as follows. In Sec-
tion 2, model description and some preliminaries are
given. Three main theorems are obtained in Section
3 to ensure the global exponential synchronization of
the BAM neural networks with varying-time delays.
In Section 4, the effectiveness of the proposed theory
is shown by two numerical examples.

2 Model and Preliminaries

In this paper, the BAM neural networks with varying-
time delays takes the following form:
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The drive system is














































dxi(t)
dt

= −aixi(t) +
m
∑

j=1
cijfj(yj(t))

+
m
∑

j=1
dijfj(yj(t− τij(t))) + Ii,

dyj(t)
dt

= −bjyj(t) +
n
∑

i=1
pjigi(xi(t))

+
n
∑

i=1
qjigi(xi(t− σji(t))) + Jj ,

(1)

and the response system is described by














































dzi(t)
dt

= −aizi(t) +
m
∑

j=1
cijfj (wj(t))

+
m
∑

j=1
dijfj (wj(t− τij(t))) + Ii − ui(t),

dwj(t)
dt

= −bjwj(t) +
n
∑

i=1
pjigi (zi(t))

+
n
∑

i=1
qjigi (zi(t− σji(t))) + Jj − vj(t),

(2)
wherei = 1, 2, · · · , n, j = 1, 2, · · · ,m, t ≥ 0, xi(t)
and yj(t) are the state variables associated with the
ith neuron and the jth neuron at timet, respectively;
ai > 0 and bj > 0 represent the rate with which
the i-th neurons and the jth neurons will reset its po-
tential to the resting state in isolation when discon-
nected from the networks and external inputs, respec-
tively; cij , pji, dij , qji are constants, and denote the
first-order connection weights of the neural networks
;fj, gi are the activation functions of the jth neurons
and ith neurons at timet respectively;Ii andJi rep-
resent the ith and jth component of an external inputs
source introduced from outside the network to the cell
i andj, respectively;ui(t) andvj(t) denote the con-
trol inputs and will be appropriately designed to ob-
tain a certain control objective. The varying-time de-
lays τij(t)andσji(t) are bounded and correspond to
finite speed of axonal signal transmission

Set

τ∗ = max
1≤i≤n

1≤j≤m

{τij(t)} , σ
∗ = max

1≤i≤n

1≤j≤m

{σji(t)} ,

then the initial conditions of (1) and (2) can respec-
tively be expressed as

xi(s) = ϕi(s), s ∈ [−σ∗, 0] , yj(s) = φj(s),
s ∈ [−τ∗, 0] i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

(3)
and

zi(s) = ϕ̄i(s), s ∈ [−σ∗, 0] , wj(s) = φ̄j(s),
s ∈ [−τ∗, 0] i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(4)

Letαi(t) = xi(t)− zi(t), βj(t) = yj(t)−wj(t),
then we have the error system:































































α̇i(t) = −aiαi(t) +
m
∑

j=1
cij [fj (yj(t))− fj (wj(t))]

+
m
∑

j=1
dij [fj (yj(t− τij(t)))

−fj (wj(t− τij(t)))] + ui(t),

β̇j(t) = −bjβj(t) +
n
∑

i=1
pji [gi (xi(t))− gi (zi(t))]

+
n
∑

i=1
qji [gi (xi(t− σji(t)))

−gi (zi(t− σji(t)))] + vj(t),
(5)

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m. We de-
note u(t) = (u1(t), u2(t), · · · un(t))

T , v(t) =

(v1(t), v2(t), · · · vm(t))T .
The control inputs associated with the state-

feedback are designed as follows:

u(t) =



















u1(t)

u2(t)

...
un(t)



















=























n
∑

k=1

w1k (xk(t)− zk(t))

n
∑

k=1

w2k (xk(t)− zk(t))

...
n
∑

k=1

wnk (xk(t)− zk(t))























=









w11 w12 · · · w1n

w21 w22 · · · w2n

· · · · · ·
wn1 wn2 · · · wnn



















x1(t)− z1(t)
x2(t)− z2(t)

...
xn(t)− zn(t)











= Ωα(t),
(6)

v(t) =















v1(t)
v2(t)

...
vm(t)















=























m
∑

l=1

γ1l (yl(t)− wl(t))

n
∑

l=1

γ2l (yl(t)− wl(t))

...
m
∑

l=1

γml (yl(t)− wl(t))























=









γ11 γ12 · · · γ1m
γ21 γ22 · · · γ2m

· · · · · ·
γm1 γm2 · · · γmm



















y1(t)− w1(t)
y2(t)− w2(t)

...
ym(t)− wm(t)











= Γβ(t),
(7)

whereΩ andΓ are the gain matrixes to be determined
for synchronizing both the drive system and the re-
sponse system.
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For simplicity, let

Gi (αi(t)) = gi (xi(t))− gi (zi(t))
= gi (αi(t) + zi(t))− gi (zi(t)) ,

Fj (βj(t)) = fj (yj(t))− fj (wj(t))
= fj (βj(t) + wj(t))− fj (wj(t)) ,

then, error system (5) can be written as














































α̇i(t) = −aiαi(t) +
m
∑

j=1
cijFj (βj(t))

+
m
∑

j=1
dijFj (βj(t− τij(t))) + ui(t),

β̇j(t) = −bjβj(t) +
n
∑

i=1
pjiGi (αi(t))

+
n
∑

i=1
qjiGi (αi(t− σji(t))) + vj(t),

(8)
where

ui(t) =

n
∑

k=1

wik (xk(t)− zk(t)) =

n
∑

k=1

wikαk(t),

(9)

vj(t) =

m
∑

l=1

γjl (yl(t)− wl(t)) =

m
∑

l=1

γjlβj(t).

(10)
for i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

Throughout the paper, we have the following as-
sumptions.

(H0) There exists constantskj andhi such that

|fj(x)− fj(y)| ≤ kj |x− y| , j = 1, 2, · · · ,m,

|gi(x)− gi(y)| ≤ hi |x− y| , i = 1, 2, · · · , n.

(H1) τij(t) andσji(t) are differential ont and

0 < τ = max
1≤i≤n

1≤j≤m

{τ̇ij(t)} < 1,

0 < σ = max
1≤i≤n

1≤j≤m

{σ̇ji(t)} < 1.

Definition 1 The norms used in this paper are defined
as

‖x(t)− z(t)‖ =
n
∑

i=1
|xi(t)− zi(t)|

r,

‖y(t)− w(t)‖ =
m
∑

j=1
|yj(t)− wj(t)|

r,

‖ϕ(s)− ϕ̄(s)‖ = sup
−σ∗≤s≤0

n
∑

i=1
|ϕi(s)− ϕ̄i(s)|

r,

∥

∥φ(s)− φ̄(s)
∥

∥ = sup
−τ∗≤s≤0

n
∑

i=1

∣

∣φj(s)− φ̄j(s)
∣

∣

r
,

wherer = 1 or 2, ϕ(s) = (ϕ1(s), ϕ2(s), · · ·ϕn(s))
T

and φ(s) = (φ1(s), φ2(s), · · · φm(s))T are

the initial conditions of the drive system
(1), ϕ̄(s) = (ϕ̄1(s), ϕ̄2(s), · · · ϕ̄n(s))

Tand

φ̄(s) =
(

φ̄1(s), φ̄2(s), · · · φ̄m(s)
)T

are the ini-
tial conditions of the response system (2).

Definition 2 The drive system (1) and the response
system (2) are said to be globally exponentially syn-
chronized if there are control inputsu(t) andv(t), and
further there exists constantsM ≥ 1 andλ > 0 such
that

‖x(t)− z(t)‖+ ‖y(t)− w(t)‖
≤ M

[

‖ϕ(s)− φ(s)‖+
∥

∥ϕ̄(s)− φ̄(s)
∥

∥

]

e−λt(t ≥ 0).

Lemma 3 Assume that

−ai +
m
∑

j=1

(

|pji|+ (1− σ)−1 |qji|
)

hi +
n
∑

k=1

|wki| < 0,

i = 1, 2, · · · , n,
(11)

−bj +
n
∑

i=1

(

|cij |+ (1− τ)−1 |dij |
)

kj +
m
∑

l=1

|γlj| < 0,

j = 1, 2, · · · ,m,
(12)

then there existsε > 0 such that

ε− ai +
m
∑

j=1

(

|pji|+ (1− σ)−1eεσ
∗
|qji|

)

hi

+
n
∑

k=1

wki ≤ 0, i = 1, 2, · · · , n,

ε− bj +
n
∑

i=1

(

|cij|+ (1− τ)−1eετ
∗
|dij |

)

kj

+
m
∑

l=1

γlj ≤ 0, j = 1, 2, · · · ,m.

The proof of Lemma 3 is similar to that of Lemma
2.4 of [29], here we omit it.

Lemma 4 (Halanay inequality )[30] Let τ ≥ 0 be a
constant, andx(t) be a non-negative continuous func-
tion defined for[t0 − τ, t) which satisfied

ẋ(t) ≤ −ax(t) + bx̄(t),

wherex̄(t) = sup
t−τ≤s≤t

x(s), a andb are constant sat-

isfyinga > b > 0, then there exist constantsk > 0,
such that

x(t) ≤ x̄(t0)e
−k(t0−τ), t ≥ t0.

3 Main results
In this section, we will derive some sufficient condi-
tions to ensure the exponential stability of system (1)
and (2).
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Theorem 5 The drive system (1) and the response
system (2) are globally exponentially synchronized if
(H0) and(H1) hold, moreover,

−2ai +
m
∑

j=1
(|cij |+ |dij |) kj +

n
∑

k=1

|wik|+
n
∑

k=1

|wki|

+
m
∑

j=1

(

|pji|+ (1− σ)−1 |qji|
)

hi < 0, i = 1, 2, · · · , n,

(13)

−2bj +
n
∑

i=1
(|pji|+ |qji|)hi +

m
∑

l=1

|γjl|+
m
∑

l=1

|γlj|

+
n
∑

i=1

(

|cij |+ (1− τ)−1 |dij |
)

kj < 0, j = 1, 2, · · · ,m,

(14)
hold.

Proof. From (8)-(10), it is not difficult to find that














































































dα2

i (t)
dt

= −2aiα
2
i (t) + 2αi(t)

m
∑

j=1
cijFj (βj(t))

+2αi(t)
m
∑

j=1
dijFj (βj(t− τij(t)))

+2αi(t)
n
∑

k=1

wikαk(t),

dβ2

j (t)

dt
= −2bjβj(t) + 2βj(t)

n
∑

i=1
pjiGi (αi(t))

+2βj(t)
n
∑

i=1
qjiGi (αi(t− σji(t)))

+2βj(t)
m
∑

l=1

γjlβj(t),

(15)
Consider the following Lyapunov functional

V (t) =
n
∑

i=1
eεtα2

i (t) +
n
∑

j=1
eεtβ2

j (t)

+(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

∫ t

t−τij (t)
eε(s+τij(s))β2

j (s)ds

+(1− σ)−1
n
∑

i=1

m
∑

j=1
|qji|hi

∫ t

t−σji(t)
eε(s+σji(s))α2

i (s)ds,

(16)
then

D+V (t) ≤ eεt
n
∑

i=1

[

εα2
i (t)− 2aiα

2
i (t)

+2
m
∑

j=1
|cij | kj |αi(t)| |βj(t)|

+2
m
∑

j=1
|dij | kj |αi(t)| |βj(t− τij(t))|

]

+2eεt
n
∑

i=1

n
∑

k=1

|wik| |αi(t)| |αk(t)|

+eεt
m
∑

j=1

[

εβ2
j (t)− 2bjβ

2
j (t)

+2
n
∑

i=1
|pji|hi |βj(t)| |αi(t)|

]

+2eεt
m
∑

j=1

[

n
∑

i=1
|qji| hi |βj(t)| |αi(t− σji(t))|

+
m
∑

l=1

|γjl| |βj(t)| |βl(t)|

]

+eεt(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

[

eετij(t)β2
j (t)

−β2
j (t− τij(t))(1− τ̇ij(t))

]

+eεt(1− σ)−1
n
∑

i=1

m
∑

j=1
|qji|hi

[

eεσji(t)α2
i (t))

−α2
i (t− σji(t))(1 − σ̇ji(t)

]

≤ eεt
n
∑

i=1

[

εα2
i (t)− 2aiα

2
i (t)

+
m
∑

j=1
|cij | kj

(

α2
i (t) + β2

j (t)
)

+
m
∑

j=1
|dij | kj

(

α2
i (t) + β2

j (t− τij(t))
)

]

+eεt
n
∑

i=1

[

n
∑

k=1

|wik|
(

α2
i (t) + α2

k(t)
)

]

+eεt
m
∑

j=1

[

εβ2
j (t)− 2bjβ

2
j (t)

+
n
∑

i=1
|pji| hi

(

β2
j (t) + α2

i (t)
)

]

+eεt
m
∑

j=1

[

n
∑

i=1
|qji|hi

(

β2
j (t) + α2

i (t− σji(t))
)

+
m
∑

l=1

|γjl|
(

β2
j (t) + β2

l (t)
)

]

+eεt(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

[

eετij(t)β2
j (t)

−β2
j (t− τij(t))(1− τ̇ij(t))

]

+eεt(1− σ)−1
n
∑

i=1

m
∑

j=1
|qji|hi

[

eεσji(t)α2
i (t)

−α2
i (t− σji(t))(1 − σ̇ji(t))

]

≤ eεt
n
∑

i=1

[

ε− 2ai +
m
∑

j=1
(|cij |+ |dij |) kj

+
n
∑

k=1

|wik|+
n
∑

k=1

|wki|

+hi
m
∑

j=1

(

|pji|+ (1− σ)−1eεσ
∗
|qji|

)

]

α2
i (t)

+eεt
m
∑

j=1
[ε− 2bj+

n
∑

i=1
(|pji|+ |qji|)hi

+
m
∑

l=1

|γjl|+
m
∑

l=1

|γlj |

+kj
n
∑

i=1

(

|cij |+ (1− τ)−1eετ
∗
|dij |

)

]

β2
j (t),

By (13), (14) and Lemma 3, we can find that
D+V (t) ≤ 0, and soV (t) ≤ V (0) for all t ≥ 0.

From (16), it is easy to see that
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eεt

[

n
∑

i=1
α2
i (s) +

n
∑

j=1
β2
j (s)

]

≤
n
∑

i=1
α2
i (0) +

n
∑

j=1
β2
j (0)

+(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

∫ 0
−τij(0)

β2
j (s)ds

+(1− σ)−1
n
∑

i=1

m
∑

j=1
|qji|hi

∫ 0
−σji(0)

α2
i (s)ds

≤
n
∑

i=1
|αi(0)|

2 +
n
∑

j=1

∣

∣β
j
(0)

∣

∣

2

+(1− τ)−1
n
∑

i=1
max

1≤j≤m
(|dij | kj)

∫ 0
−τ∗

m
∑

j=1
β2
j (s)ds

+(1− σ)−1
n
∑

i=1
max
1≤i≤n

(|qji| hi)
∫ 0
−σ∗

n
∑

i=1
α2
i (s)ds,

≤

[

1 + (1− σ)−1σ∗
n
∑

i=1
max
1≤i≤n

(|qji|hi)

]

· sup
−σ∗≤s≤0

n
∑

i=1
|αi(s)|

2

+

[

1 + (1− τ)−1τ∗
n
∑

i=1
max

1≤j≤m
(|dij | kj)

]

· sup
−τ∗≤s≤0

m
∑

j=1
|βj(s)|

2

≤ M1

[

‖ϕ(s)− φ(s)‖+
∥

∥ϕ̄(s)− φ̄(s)
∥

∥

]

t ≥ 0,

where

M1 = max

{

1 + (1− τ)−1τ∗
n
∑

i=1
max

1≤j≤m
(|dij | kj) ,

1 + (1− σ)−1σ∗
n
∑

i=1
max
1≤i≤n

(|qji|hi)

}

≥ 1.

That is

‖x(t)− z(t)‖+ ‖y(t)− w(t)‖
≤ M

[

‖ϕ(s)− φ(s)‖+
∥

∥ϕ̄(s)− φ̄(s)
∥

∥

]

e−λt(t ≥ 0).

This completes the proof. ⊓⊔

Theorem 6 The drive system (1) and the response
system (2) are globally exponentially synchronized if
(H0),(H1) (11) and (12) hold.

Proof. Construct the following Lyapunov functional

V (t) =
n
∑

i=1
eεt |αi(t)|+

n
∑

j=1
eεt |βj(t)|

+(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

·
∫ t

t−τij (t)
eε(s+τij(s) |βj(s)|ds

+(1− σ)−1
n
∑

i=1

m
∑

j=1
|qji|hi

·
∫ t

t−σji(t)
eε(s+σji(s) |αi(s)|ds.

(17)

Then

D+V (t) = εeεt

[

n
∑

i=1
|αi(t)|+

m
∑

j=1
|βj(t)|

]

+eεt
n
∑

i=1
α̇i(t) sign (αi(t))

+eεt
m
∑

j=1
β̇j(t) sign (βi(t))

+(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

[

eε(t+τij(t)) |βj(t)|

−eεt |βj(t− τij(t))| (1− τ̇ij(t))
]

+(1− σ)−1
n
∑

i=1

m
∑

j=1
|qji|hi

[

eε(t+σji(t)) |αi(t)|

−eεt |αi(t− σji(t))| (1− σ̇ji(t))
]

,

≤ eεt
n
∑

i=1
[ε |αi(t)| − ai |αi(t)|

+
m
∑

j=1
|cij | |Fj (βj(t))|

+
m
∑

j=1
|dij | |Fj (βj(t− τij(t)))|

+sign(αi(t))ui(t)]

+(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

[

eε(t+τij(t)) |βj(t)|

−eεt |βj(t− τij(t))| (1− τ̇ij(t))
]

+eεt
m
∑

j=1
[ε |βj(t)| − bj |βj(t)|

+
n
∑

i=1
|pji| |Gi (αi(t))|

+
n
∑

i=1
|qji| |Gi (αi(t− σji(t)))|

+sign(βj(t))vj(t)]

+(1− σ)−1
n
∑

i=1

m
∑

j=1
|qji|hi

[

eε(t+σji(t)) |αi(t)|

−eεt |αi(t− σji(t))| (1− σ̇ji(t)).

By assumptions(H0) and(H1), we have

D+V (t) ≤ eεt
n
∑

i=1
[ε |αi(t)| − ai |αi(t)|

+
m
∑

j=1

(

|cij | kj + (1− τ)−1eετ
∗
|dij | kj

)

|βj(t)|

+sign(αi(t))ui(t)] + eεt
m
∑

j=1
[ε |βj(t)| − bj |βj(t)|

+
n
∑

i=1

(

|pji|hi + (1− σ)−1eεσ
∗
|qji|hi

)

|αi(t)|

+sign(βj(t))vj(t)]

= eεt
n
∑

i=1

{[

ε−ai+hi
m
∑

j=1

(

|pji|+(1−σ)−1eεσ
∗
|qji|

)

]

· |αi(t)|+ sign(αi(t))ui(t)}

+eεt
m
∑

j=1

{[

ε− bj+ kj
n
∑

i=1

(

|cij |+ (1−τ)−1eετ
∗
|dij|

)

]

· |βj(t)|+ sign(βj(t))vj(t)}
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= eεt
n
∑

i=1

[

ε−ai+hi
m
∑

j=1

(

|pji|+ (1−σ)−1eεσ
∗
|qji|

)

+
n
∑

k=1

|wki|

]

|αi(t)|

+eεt
m
∑

j=1

[

ε− bj + kj
n
∑

i=1

(

|cij |+ (1−τ)−1eετ
∗
|dij |

)

+
m
∑

l=1

|γlj|

]

|βj(t)| .

By conditions (11), (12) and Lemma 3, we can
find thatD+V (t) ≤ 0, and soV (t) ≤ V (0), for all
t ≥ 0.

From (17), it follows that

eεt

[

n
∑

i=1
|αi(t)|+

n
∑

j=1
|βj(t)|

]

≤
n
∑

i=1
|αi(0)|+

n
∑

j=1
|βj(0)|

+(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

·
∫ 0
−τij(0)

eε(s+τij(s)) |βj(s)|ds

+(1− σ)−1
m
∑

j=1

n
∑

i=1
|qji|hi

·
∫ 0
−σji(0)

eε(s+σji(s) |αi(s)|ds,

≤
n
∑

i=1
|αi(0)|+

n
∑

j=1
|βj(0)|

+(1− τ)−1
n
∑

i=1

m
∑

j=1
|dij |kj

∫ 0
−τ∗

eε(s+τ∗) |βj(s)|ds

+(1− σ)−1
m
∑

j=1

n
∑

i=1
|qji|hi

∫ 0
−σ∗ e

ε(s+σ∗) |αi(s)|ds

≤ sup
−σ∗≤s≤0

n
∑

i=1
|αi(s)|+ sup

−τ∗≤s≤0

m
∑

j=1
|βj(s)|

+(1− τ)−1 sup
−τ∗≤s≤0

m
∑

j=1
|βj(s)|

·
n
∑

i=1
max

1≤j≤m
(|dij | kj)

∫ 0
−τ∗

eε(s+τ∗)ds

+(1− σ)−1 sup
−σ∗≤s≤0

n
∑

i=1
|αi(s)|

·
n
∑

i=1
max
1≤i≤n

(|qji| hi)
∫ 0
−σ∗ e

ε(s+σ∗)ds

≤

[

1 + (1− σ)−1
m
∑

j=1
max
1≤i≤n

(|qji|hi)
eεσ

∗

ε

]

· sup
−σ∗≤s≤0

n
∑

i=1
|αi(s)|

+

[

1 + (1− τ)−1
n
∑

i=1
max

1≤j≤m
(|dij | kj)

eετ
∗

ε

]

· sup
−τ∗≤s≤0

m
∑

j=1
|βj(s)|

≤ M
[

‖ϕ(s)− φ(s)‖+
∥

∥ϕ̄(s)− φ̄(s)
∥

∥

]

t ≥ 0,

where

M = max

{

1 + (1− σ)−1
n
∑

i=1
max
1≤i≤n

(|qji|hi)
eεσ

∗

ε
,

1 + (1− τ)−1
n
∑

i=1
max

1≤j≤m
(|dij | kj)

eετ
∗

ε

}

≥ 1.

That is

‖x(t)− z(t)‖+ ‖y(t)− w(t)‖
≤ M

[

‖ϕ(s)− φ(s)‖+
∥

∥ϕ̄(s)− φ̄(s)
∥

∥

]

e−λt(t ≥ 0).

By Definition 2, the drive system (1) and the response
system (2) are globally exponentially synchronized.⊓⊔

Theorem 7 The drive system (1) and the response
system (2) are globally exponentially synchronized if
(H0)and(H1) hold, moreover,

−δ +max {A1, B1}+max {C1,D1} < 0, (18)

whereδ = max
1≤i≤n

1≤j≤m

{wii − ai, γjj − bj} > 0,

A1 =
m
∑

j=1
max
1≤i≤n

{|pji| hi}+
n
∑

k=1

max
1≤i≤n

i6=k

{|wki|} ,

B1 =
n
∑

i=1
max

1≤j≤m
{|cij | kj}+

m
∑

l=1

max
1≤j≤m

j 6=l

{|γlj |} ,

C1 =
m
∑

j=1
max
1≤i≤m

{|qji|hi} ,

D1 =
m
∑

i=1
max

1≤j≤m
{|dij | kj} .

Proof. From (5), (6) and (7), it follows that

α̇i(t) = −aiαi(t) +
m
∑

j=1
cijFj (βj(t))

+
m
∑

j=1
dijFj (βj(t− τij(t)))

+wiiαi(t) +
n
∑

k=1

k 6=i

wikαk(t),

(19)

β̇j(t) = −bjβj(t) +
n
∑

i=1
pjiGi (αi(t))

+
n
∑

i=1
qjiGi (αi(t− σji(t)))

+γjjβj(t) +
n
∑

l=1

l6=j

γjlβl(t).

(20)

From (19), we have

α̇i(t) + (ai − wii)αi(t) =
m
∑

j=1
cijFj (βj(t))

+
m
∑

j=1
dijFj (βj(t− τij(t))) +

n
∑

k=1

k 6=i

wikαk(t).

(21)
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Multiplying both sides of (21) withe(ai−wii)t, yields

e(ai−wii)t [α̇i(t) + (ai − wii)αi(t)]

= e(ai−wii)t

[

m
∑

j=1
cijFj (βj(t))

+
m
∑

j=1
dijFj (βj(t− τij(t))) +

n
∑

k=1

k 6=i

wikαk(t)



 .

(22)
Integrate both sides of (22), we have

e(ai−wii)tαi(t) = αi(0) +
∫ t

0 e
(ai−wii)s

·
m
∑

j=1

[

cijFj (βj(s)) +
m
∑

j=1
dijFj (βj(s− τij(s)))

+
n
∑

k=1

k 6=i

wikαk(s)



 ds,

αi(t) = e(wii−ai)tαi(0) +
∫ t

0 e
(ai−wii)(s−t)

·
m
∑

j=1

[

cijFj (βj(s)) +
m
∑

j=1
dijFj (βj(s− τij(s)))

+
n
∑

k=1

k 6=i

wikαk(s)



 ds,

then

n
∑

i=1
|αi(t)| ≤

n
∑

i=1

{

|αi(0)| e
(wii−ai)t

+
∫ t

0 e
(ai−wii)(s−t)

[

m
∑

j=1
|cij | kj |βj(s)|

+
m
∑

j=1
|dij | kj |βj(s− τij(s))|

+
n
∑

k=1

k 6=i

|wik| |αk(s)|



 ds







.

(23)

Similar to the above deductions, from (20), we
obtain

m
∑

j=1
|βj(t)| ≤

m
∑

j=1

{

|βj(0)| e
(γjj−bj)t

+
∫ t

0 e
(bj−γjj)(s−t)

[

n
∑

i=1
pjihi |αi(s)|

+
n
∑

i=1
qjihi |αi(s− σji(s))|

+
m
∑

l=1

l6=j

|γjl| |βl(s)|



 ds







.

(24)

Let

A =
n
∑

i=1

{

|αi(0)| e
(wii−ai)t

+
∫ t

0 e
(ai−wii)(s−t)

[

m
∑

j=1
|cij | kj |βj(s)|

+
m
∑

j=1
|dij | kj |βj(s − τij(s))|

+
n
∑

k=1

k 6=i

|wik| |αk(s)|



 ds







,

B =
m
∑

j=1

{

|βj(0)| e
(γjj−bj)t

+
∫ t

0 e
(bj−γjj)(s−t)

[

n
∑

i=1
pjihi |αi(s)|

+
n
∑

i=1
qjihi |αi(s− σji(s))|

+
m
∑

l=1

l6=j

|γjl| |βl(s)|



 ds







.

Then, we have
n
∑

i=1
|αi(t)|+

m
∑

j=1
|βj(t)| ≤A+B.

Let P (t) = A+B, η = max
1≤i≤n,

1≤j≤m

{τ∗, σ∗}, P̄ (t) =

sup
t−η≤s≤t

P (s). Then

P (t) ≥

n
∑

i=1

|αi(t)|+

m
∑

j=1

|βj(t)|, (25)

and

P̄ (t) ≥ sup
t−η≤s≤t







n
∑

i=1

|αi(s)|+

m
∑

j=1

|βj(s)|







,

Ṗ (t) ≤ −δP (t) +
n
∑

i=1

{

m
∑

j=1
|cij | kj |βj(t)|

+
m
∑

j=1
|dij | kj |βj(t− τij(t))|+

n
∑

k=1

k 6=i

|wik| |αk(t)|







+
m
∑

j=1

{

n
∑

i=1
|pji|hi |αi(t)|

+
n
∑

i=1
|qji|hi |αi(t− σji(t))|+

m
∑

l=1

l6=j

|γjl| |βl(t)|







,

(26)
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Ṗ (t) ≤ −δP (t) +
m
∑

j=1
max
1≤i≤n

{|pji| hi}
n
∑

i=1
|αi(t)|

+
n
∑

i=1
max

1≤j≤m
{|cij| kj}

m
∑

j=1
|βj(t)|

+
m
∑

j=1
max
1≤i≤n

{|qji|hi}
n
∑

i=1
|αi(t− σji(t))|

+
n
∑

i=1
max

1≤j≤m
{|dij| kj}

m
∑

j=1
|βj(t− τij(t))|

+
n
∑

k=1

max
1≤i≤n,

i6=k

{|wki|}
n
∑

i=1
|αi(t)|

+
m
∑

l=1

max
1≤j≤n,

i6=l

{|γlj |}
m
∑

j=1
|βj(t)|

= −δP (t) +A1

n
∑

i=1
|αi(t)|+B1

m
∑

j=1
|βj(t)|

+C1

n
∑

i=1
|αi(t− σji(t))|+D1

m
∑

j=1
|βj(t− τij(t))|

≤ −δP (t) + max {A1, B1}P (t)
+max {C1,D1} P̄ (t)
= − [δ −max {A1, B1}]P (t)
+max {C1,D1} P̄ (t),

i.e.

Ṗ (t) ≤ − [δ −max {A1, B1}]P (t)
+max {C1,D1} P̄ (t),

(27)

By Lemma 4, from (27), there existsk > 0, such that

P (t) ≤ P̄ (0)e−kt, t ≥ 0, (28)

and

P̄ (0) = sup
−η≤s≤0

P (0) ≤

n
∑

i=1

|αi(0)|+

m
∑

j=1

|βj(0)| .

(29)
Substitute (29) into (28), and by (25), we have

‖x(t)− z(t)‖+ ‖y(t)− w(t)‖
≤ M

[

‖ϕ(s)− φ(s)‖+
∥

∥ϕ̄(s)− φ̄(s)
∥

∥

]

e−λt(t ≥ 0),

whereM = 1, λ = k > 0.
By Definition 2, we have that the drive system (1)

and the response system (2) are globally exponentially
synchronized. ⊓⊔

Remark 8 Theorem 5-7 are presented by the use of
different Lemmas and various analysis techniques.
They provide three sufficient conditions to ensure the
exponential synchronization of system (1) and (2).
Compare Theorem 5 with Theorem 6, we find that con-
ditions (11) and (12) in Theorem 6 are more simple to
be verified than conditions (13) and (14) in Theorem
5. So, from the point of practical application, The-
orem 6 is more suitable for the exponential synchro-
nization of BAM neural networks with varying delays.

Remark 9 From conditions (11) and (12), we get that

ai >
m
∑

j=1

(

|pji|+ (1− σ)−1 |qji|
)

hi

+
n
∑

k=1

|wki|, i = 1, 2, · · · n,
(30)

and

bj >
n
∑

i=1

(

|cij |+ (1− τ)−1 |dij |
)

kj

+
m
∑

l=1

|γlj| , j = 1, 2, · · ·m,
(31)

while from condition (18), it follows that

ai < wii −max {A1, B1} −max {C1,D1} ,
i = 1, 2, · · · n,

(32)
and

bj < γjj −max {A1, B1} −max {C1,D1} ,
j = 1, 2, · · ·m,

(33)
whereA1, B1, C1,D1 are the same as that in Theorem
7.

Then, we get the following two Corollaries.

Corollary 10 The drive system (1) and the response
system (2) are globally exponentially synchronized if
(H0), (H1) (30) and (31) hold.

Corollary 11 The drive system (1) and the response
system (2) are globally exponentially synchronized if
(H0), (H1) (32) and (32) hold.

Remark 12 From Corollary 10 and 11, if parame-
ters ai(i = 1, 2, · · · , n), bj(j = 1, 2, · · · ,m) are
larger than certain values, then we can judge the syn-
chronization of (1) and (2) by Theorem 5-6 or Corol-
lary 10. On the other hand, if parametersai(i =
1, 2, · · · , n), bj(j = 1, 2, · · · ,m) are smaller than
certain values, then we can use Theorem 7 or Corol-
lary 11 to decide the synchronization of (1) and (2).
Therefore, Theorem 5-7 can be used to different sys-
tems to ensure the synchronization between the master
system and the slave system. In the following, we will
give two examples to show the usefulness of Theorem
5-7.

4 Numerical Examples
In this section, we will give two examples to illustrate
our results.
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Example 1 Consider the following second-order
BAM neural networks with time-varying delays



















































dxi(t)
dt

= −aixi(t) +
2
∑

j=1
cijfj (yj(t))

+
2
∑

j=1
dijfj (yj(t− τij(t))) + Ii,

dyj(t)
dt

= −bjyj(t) +
2
∑

i=1
pjigi (xi(t))

+
2
∑

i=1
qjigi (xi(t− σji(t))) + Jj ,

(34)

wheref1(x) = f2(x) = g1(x) = g2(x) = sin
(

x
2

)

,
we selectk1 = k2 = h1 = h2 = 0.5, The delays
τij(t) = 0.4(1 − cos t), σji(t) = 0.6(1 − cos t), and
satisfy

0 ≤ τij(t) ≤ 2 = τ∗, τ̇ij(t) ≤ 0.4 = τ, 0 ≤
σji(t) ≤ 2 = σ∗, σ̇ji(t) ≤ 0.6 = σ, i, j = 1, 2;

Let a1 = 3, a2 = 4, b1 = 3, b2 = 4, p11 =
0.3, p21 = −0.7, p12 = −0.2, p22 = 0.8; q11 =
−0.1, q21 = 0.3, q12 = 0.2, q22 = −0.2, c11 =
−0.8, c21 = 1.2, c12 = 1, c22 = −1; d11 = 0.2, d21 =
0.4, d12 = −0.3, d22 = −0.3; and the response sys-
tem is designed by



















































dzi(t)
dt

= −aizi(t) +
2
∑

j=1
cijfj (wj(t))

+
2
∑

j=1
dijfj (wj(t− τij(t))) + Ii − ui(t),

dwj(t)
dt

= −bjwj(t) +
2
∑

i=1
pjigi (zi(t))

+
2
∑

i=1
qjigi (zi(t− σji(t))) + Jj − vj(t),

(35)

ui(t) =

2
∑

k=1

wik (xk(t)− zk(t)) =

2
∑

k=1

wikαk(t),

vj(t) =

2
∑

l=1

γjl (yl(t)− wl(t)) =

2
∑

l=1

γjlβj(t),

i, j = 1, 2,the controller gain coefficients are cho-
sen asw11 = −1, w21 = 0.5, w12 = 2, w22 =
−1; γ11 = −0.5, γ21 = 0.5, γ12 = 1, γ22 = −1.

By simple computation, it is not difficult to find
that all the above parameters satisfy (11) and (12).
Thus, by Theorem 6, system (34) and (35) are expo-
nential synchronization. Simulation results with 10
random initial points are shown in Fig.1-Fig.3.

Example 2 For system (34) and (35), letf1(x) =
f2(x) = g1(x) = g2(x) = tanhx, we select
k1 = k2 = h1 = h2 = 1. The delaysτij(t) =
0.5(1 + sin t), σji(t) = 0.3(1 + sin t), and satisfy0 ≤

Figure 1: The state diagram of system (34) in example
1 with 10 random initial points.

Figure 2: The state diagram of system (35) in example
1 with 10 random initial points.

Figure 3: The synchronization error of (34) and (35)
in example 1 with 10 random initial points.
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τij(t) ≤ 1 = τ∗, τ̇ij(t) ≤ 0.5 = τ, 0 ≤ σji(t) ≤
0.6 = σ∗, σ̇ji(t) ≤ 0.3 = σ, i, j = 1, 2;

The other parametersai, bj , cij,dij,pji, qji, i, j =
1, 2 are the same as those in Example 1.

Select the controller gain coefficients are cho-
sen asw11 = 4, w21 = −1.5, w12 = −1.2, w22 =
5; γ11 = 4, γ21 = −0.8, γ12 = −1.2, γ22 = 5.0
By simple computation, we find that all the above pa-
rameters satisfy (18). Thus, by Theorem 7, system
(34) and (35) are exponential synchronization. Simu-
lation results with 10 random initial points are shown
in Fig.4-Fig.6.

Figure 4: The state diagram of system (34) in example
2 with 10 random initial points.

Figure 5: The state diagram of system (35) in example
2 with 10 random initial points.

Figure 6: The synchronization error of (34) and (35)
in example 2 with 10 random initial points.

Remark 13 In Example 1, sincewii − ai <
0, γjj − bj < 0, i, j = 1, 2, then δ =
min

1≤i≤n,

1≤j≤m

{wii − ai, γjj − bj} < 0, which contradict to

condition (18). Therefore, the exponential synchro-
nization of (34) and (35) in Example 1 can’t be ob-
tained by Theorem 7. On the other hand, In Example

2, since−ai + wii > 0, −bj + γjj > 0, i, j = 1, 2,
then conditions (11) and (12) aren’t satisfied. Thus,
Theorem 6 aren’t suitable for the exponential synchro-
nization of (34) and (35) in Example 2. The examples
1 and 2 show that all the Theorems 5-7 in this paper
can be used to different problems.

5 Conclusions
Based on Lyapunov functional, analysis techniques
and differential equation theory, three sufficient global
exponential synchronization conditions are derived
for a class of BAM neural networks with time-varying
delays. The given algebra conditions are easily veri-
fiable and useful in different models. Two examples
and synchronization simulations with 10 random ini-
tial values are given to illustrate the effectiveness of
our results.
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